Two-scale solution for tripped turbulent boundary layer

Author:

Chen C.,He L.ORCID

Abstract

Recent findings on the Reynolds-number-dependent behaviour of near-wall turbulence in terms of the ‘foot-printing’ of outer large-scale structures call for a new modelling development. A two-scale framework was proposed to couple a local fine-mesh solution with a global coarse-mesh solution by He (Intl J. Numer. Meth. Fluids, vol. 86, 2018, pp. 655–677). The methodology was implemented and demonstrated by Chen & He (J. Fluid Mech, vol. 933, 2022, p. A47) for a canonical turbulent channel flow, where the mesh-count scaling with Reynolds number is potentially reduced from $O(R{e^2})$ for a conventional wall-resolved large-eddy simulation (WRLES) to $O(R{e^1})$ . The present work extends the two-scale method to turbulent boundary layers. A two-dimensional roughness element is used to trip a turbulent boundary layer. It is observed that large-scale disturbances originating at the trip have a much shorter lifetime and weaker foot-printing signatures on near-wall flow compared to those long streaky coherent structures in well-developed wall-bounded turbulent flows. Modal analyses show that the impact of trip-induced large scales can be adequately captured by a locally embedded fine-mesh block. For the tripped turbulent boundary layer, a Chebyshev block-spectral mapping is adopted to propagate source terms from the local fine-mesh blocks to the global coarse-mesh domain, driving to a target solution for the upscaled equations. The computed mean statistics and energy spectra are in good agreement with corresponding experimental data, WRLES and direct numerical simulation (DNS) results. The overall mesh count– $Re$ scaling is estimated to reduce from $O(R{e^{1.8}})$ for the full wall-resolved LES to $O(R{e^{0.9}})$ for the present two-scale solution.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3