Flow-induced vibrations of a D-section prism at a low Reynolds number

Author:

Chen WeilinORCID,Ji ChunningORCID,Alam Md. MahbubORCID,Xu Dong,An HongweiORCID,Tong FeifeiORCID,Zhao Yawei

Abstract

This paper presents the response and the wake modes of a freely vibrating D-section prism with varying angles of attack ( $\alpha = 0^\circ \text {--}180^\circ$ ) and reduced velocity ( $U^* = 2\text {--}20$ ) by a numerical investigation. The Reynolds number, based on the effective diameter, is fixed at 100. The vibration of the prism is allowed only in the transverse direction. We found six types of response with increasing angle of attack: typical vortex-induced vibration (VIV) at $\alpha = 0^\circ \text {--}35^\circ$ ; extended VIV at $\alpha = 40^\circ \text {--}65^\circ$ ; combined VIV and galloping at $\alpha = 70^\circ \text {--}80^\circ$ ; narrowed VIV at $\alpha = 85^\circ \text {--}150^\circ$ ; transition response, from narrowed VIV to pure galloping, at $\alpha = 155^\circ \text {--}160^\circ$ ; and pure galloping at $\alpha = 165^\circ \text {--}180^\circ$ . The typical and narrowed VIVs are characterized by linearly increasing normalized vibration frequency with increasing $U^*$ , which is attributed to the stationary separation points of the boundary layer. On the other hand, in the extended VIV, the vortex shedding frequency matches the natural frequency in a large $U^*$ range with increasing $\alpha$ generally. The galloping is characterized by monotonically increasing amplitude with enlarging $U^*$ , with the largest amplitude being $A^* = 3.2$ . For the combined VIV and galloping, the vibration amplitude is marginal in the VIV branch while it significantly increases with $U^*$ in the galloping branch. In the transition from narrowed VIV to pure galloping, the vibration frequency shows a galloping-like feature, but the amplitude does not monotonically increase with increasing $U^*$ . Moreover, a partition of the wake modes in the $U^*$ $\alpha$ parametric plane is presented, and the flow physics is elucidated through time variations of the displacement, drag and lift coefficients and vortex dynamics. The angle-of-attack range of galloping is largely predicted by performing a quasi-steady analysis of the galloping instability. Finally, the effects of $m^*$ and ${\textit {Re}}$ , the roles of afterbody and the roles of separation point in determining vibration responses and vortex shedding frequency are further discussed.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference85 articles.

1. Numerical simulation of fluid–structure interaction and vortex induced vibration of the circular and truncated cylinders;Esmaeili;J. Hydraul.,2020

2. Characteristics and suppression of flow-induced vibrations of two side-by-side circular cylinders

3. Control of unsteady flow separation over a circular cylinder using dielectric-barrier-discharge surface plasma

4. Parkinson, G.V. 1963 Aeroelastic galloping in one degree of freedom. In Symposium Wind Effects on Buildings and Structures, pp. 582–609. National Physical Laboratory.

5. Vortex-induced vibrations of a circular cylinder at low Reynolds numbers

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3