Interaction between an upper-layer point vortex and a bottom topography in a two-layer system

Author:

Takeuchi TakaakiORCID,Kubokawa Atsushi

Abstract

In this paper, the interaction between an upper-layer vortex and a bottom topography is investigated using an $f$ -plane two-layer quasi-geostrophic model with a point vortex and step-like topography. The contour dynamics method is used to formulate the model. A steadily propagating linear solution along the topography, known as the pseudoimage solution, is derived analytically for a weak point vortex, and the nonlinear solution is obtained numerically. Numerical experiments show that the nonlinear pseudoimage solution collapses with time. Saddle-node points in the velocity field are critical in this collapse. Even after the collapse, the point vortex propagates along the topography similarly to in the steadily propagating solution. Numerical experiments with various initial conditions show that the point vortex has two types of motion in this system: motion along the topography and motion away from the topography. In the latter case, the point vortex and lower-layer potential vorticity anomaly form a heton-like dipole structure. The motion classification results show that an anticyclonic (cyclonic) point vortex on the deeper (shallower) side is more likely to form a dipole structure than a cyclonic (anticyclonic) vortex on the deeper (shallower) side when their initial distance from the topography is the same.

Funder

Japan Science and Technology Agency

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3