Role of turbulent kinetic energy modulation by particle–fluid interaction in sediment pick-up

Author:

Keetels Geert H.ORCID,Chauchat JulienORCID,Breugem Wim-PaulORCID

Abstract

Reliable prediction of the erosion rate of sediment beds is important for many applications in coastal and river engineering. Theoretical understanding of empirically derived scaling relations is still lacking. This applies in particular for the scaling anomaly between low and high Shields number conditions. In this work, the erosion process is studied from the perspective of the phase-averaged turbulent kinetic energy (TKE) equations. The multi-phase TKE equations are written in a form that allows for a direct comparison with the TKE equation that appears for a stratified single-phase flow under the Boussinesq approximation. This reveals that next to buoyancy destruction, several other TKE modulation mechanisms become important at high Shields numbers and concentrations. Two scaling laws are derived for both moderate and high Shields numbers, and are tested against a wide range of experimental data.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3