Ensemble Kalman method for learning turbulence models from indirect observation data

Author:

Zhang Xin-LeiORCID,Xiao HengORCID,Luo XiaodongORCID,He GuoweiORCID

Abstract

In this work, we propose using an ensemble Kalman method to learn a nonlinear eddy viscosity model, represented as a tensor basis neural network, from velocity data. Data-driven turbulence models have emerged as a promising alternative to traditional models for providing closure mapping from the mean velocities to Reynolds stresses. Most data-driven models in this category need full-field Reynolds stress data for training, which not only places stringent demand on the data generation but also makes the trained model ill-conditioned and lacks robustness. This difficulty can be alleviated by incorporating the Reynolds-averaged Navier–Stokes (RANS) solver in the training process. However, this would necessitate developing adjoint solvers of the RANS model, which requires extra effort in code development and maintenance. Given this difficulty, we present an ensemble Kalman method with an adaptive step size to train a neural-network-based turbulence model by using indirect observation data. To our knowledge, this is the first such attempt in turbulence modelling. The ensemble method is first verified on the flow in a square duct, where it correctly learns the underlying turbulence models from velocity data. Then the generalizability of the learned model is evaluated on a family of separated flows over periodic hills. It is demonstrated that the turbulence model learned in one flow can predict flows in similar configurations with varying slopes.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference61 articles.

1. Ensemble Neural Networks (ENN): A gradient-free stochastic method

2. Turbulence modeling using body force potentials

3. Field Inversion and Machine Learning With Embedded Neural Networks: Physics-Consistent Neural Network Training

4. Abadi, M. , 2015 TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

5. Zhang, X.-L. , Xiao, H. , Luo, X. & He, G. 2022 Ensemble-based learning of turbulence models. Software available from github.com/xiaoh/DAFI/ensemble-learning.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3