Computational analysis of experiments on shock detachment in hypersonic flow of nitrogen and carbon dioxide over a wedge

Author:

Hornung H.G.ORCID,Gollan R.J.ORCID,Jacobs P.A.

Abstract

One of the most dramatic effects of vibrational and chemical non-equilibrium in hypersonic flows occurs in the bow-shock detachment process in flow over a wedge. This was shown theoretically and in reflected shock tunnel experiments by Hornung & Smith (J. Fluid Mech., vol. 93, 1979, pp. 225–239). In the present work, the effect is first demonstrated by computation of two-dimensional non-equilibrium flows. The effect of the finite transverse extent of the wedge is then studied by three-dimensional computations of non-relaxing flows. An analytical formula is obtained that gives the shock detachment distance of a finite wedge for ideal-gas and equilibrium flows. In the experiment, the finite transverse extent of the wedge competes with the non-equilibrium effects, as each introduces a new length scale. The carbon dioxide and nitrogen flows of the experiment are therefore computed in three dimensions and with two-temperature chemistry accounting for vibrational and chemical non-equilibrium. In the case of nitrogen flow, the agreement between experiment and computation is not good, the experimental detachment distance being larger. A number of possible reasons are quantitatively examined. A conclusive resolution of the discrepancy is considered to require a repeat of the experiment with more accurately characterized conditions. In the case of the carbon dioxide experiments, the computed results agree remarkably well with experiment. This is partially due to the fact that the condition is very close to equilibrium, where the sensitivity of the detachment process to relaxation effects is small. The analytical expression for the dimensionless detachment distance agrees very well with all the three-dimensional computations of non-relaxing flows.

Funder

Air Force Office of Scientific Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3