Sensitivity and downstream influence of the impinging leading-edge vortex instability in a bileaflet mechanical heart valve

Author:

Zolfaghari HadiORCID,Kerswell Rich R.ORCID,Obrist DominikORCID,Schmid Peter J.ORCID

Abstract

Bileaflet mechanical heart valves (BMHV) create unphysiological turbulent flow. Such turbulent flow involves multiple instability mechanisms interacting with one another in a confined geometry. For instance, an impinging leading-edge vortex (ILEV) instability creates disturbances at the leading edge of the valve leaflets, while potentially promoting turbulence downstream of the BMHV (Zolfaghari and Obrist, Phys. Rev. Fluids, vol. 4, 2019). In this article, we use adjoint-based methods to study the structural sensitivity of the ILEV instability in the BMHV, and to quantify the role of this instability in the maximum disturbance energy growth in the wake of the BMHV. We first present a direct numerical simulation to show the effect of the ILEV instability on the turbulent flow in the wake of the valve. Second, we perform a modal linear stability analysis on a two-dimensional subdomain attached to the leading edge of one leaflet. We investigate the sensitivity of the global modes associated with this flow using their adjoints, and then show a passive control scenario using a local feedback source. This results in a partial improvement in the flow oscillations downstream of the leaflets. We finally present a non-modal approach to identify the optimal initial conditions for achieving maximum energy growth at arbitrary locations. We show that, for sufficiently large times, the optimal initial condition for highest energy growth in the wake points at the leading edge, which includes the ILEV instability. Our study illustrates that an improved leading-edge shape can effectively reduce turbulence in the wake of the BMHV.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3