Abstract
We study swirling electrovortex flows in a cylinder filled with GaInSn metal using axisymmetric and large-scale three-dimensional numerical simulations. In our set-up electrical currents enter and exit the cell symmetrically through wires and the result is a von Kármán-like flow. Three inductionless and an inductive flow regimes are identified. Scaling laws for the magnitude of the velocity in each of these regimes are obtained both numerically and explained theoretically. We study how the aspect ratio of the cell affects the flow and how symmetrically wired cells are different from asymmetrical wired cells. We vary the radius of the connecting wires and propose a simple model that captures how the flow's intensity varies with the wire radius.
Funder
National Science Foundation
Army Research Office
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献