Direct numerical simulations of bubble-mediated gas transfer and dissolution in quiescent and turbulent flows

Author:

Farsoiya Palas KumarORCID,Magdelaine QuentinORCID,Antkowiak ArnaudORCID,Popinet StéphaneORCID,Deike LucORCID

Abstract

We perform direct numerical simulations of a gas bubble dissolving in a surrounding liquid. The bubble volume is reduced due to dissolution of the gas, with the numerical implementation of an immersed boundary method, coupling the gas diffusion and the Navier–Stokes equations. The methods are validated against planar and spherical geometries’ analytical moving boundary problems, including the classic Epstein–Plesset problem. Considering a bubble rising in a quiescent liquid, we show that the mass transfer coefficient$k_L$can be described by the classic Levich formula$k_L = (2/\sqrt {{\rm \pi} })\sqrt {\mathscr {D}_l\,U(t)/d(t)}$, with$d(t)$and$U(t)$the time-varying bubble size and rise velocity, and$\mathscr {D}_l$the gas diffusivity in the liquid. Next, we investigate the dissolution and gas transfer of a bubble in homogeneous and isotropic turbulence flow, extending Farsoiyaet al.(J. Fluid Mech., vol. 920, 2021, A34). We show that with a bubble size initially within the turbulent inertial subrange, the mass transfer coefficient in turbulence$k_L$is controlled by the smallest scales of the flow, the Kolmogorov$\eta$and Batchelor$\eta _B$microscales, and is independent of the bubble size. This leads to the non-dimensional transfer rate${Sh}=k_L L^\star /\mathscr {D}_l$scaling as${Sh}/{Sc}^{1/2} \propto {Re}^{3/4}$, where${Re}$is the macroscale Reynolds number${Re} = u_{rms}L^\star /\nu _l$, with$u_{rms}$the velocity fluctuations,$L^*$the integral length scale,$\nu _l$the liquid viscosity, and${Sc}=\nu _l/\mathscr {D}_l$the Schmidt number. This scaling can be expressed in terms of the turbulence dissipation rate$\epsilon$as${k_L}\propto {Sc}^{-1/2} (\epsilon \nu _l)^{1/4}$, in agreement with the model proposed by Lamont & Scott (AIChE J., vol. 16, issue 4, 1970, pp. 513–519) and corresponding to the high$Re$regime from Theofanouset al.(Intl J. Heat Mass Transfer, vol. 19, issue 6, 1976, pp. 613–624).

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3