Synchronization and chimeras in a network of four ring-coupled thermoacoustic oscillators

Author:

Guan YuORCID,Moon Kihun,Kim Kyu Tae,Li Larry K.B.ORCID

Abstract

We take a complex systems approach to investigating experimentally the collective dynamics of a network of four self-excited thermoacoustic oscillators coupled in a ring. Using synchronization metrics, we find a wide variety of emergent multi-scale behaviour, such as (i) a transition from intermittent frequency locking on a $\mathbb {T}^{3}$ quasiperiodic attractor to a breathing chimera, (ii) a two-cluster state of anti-phase synchronization on a periodic limit cycle, and (iii) a weak anti-phase chimera. We then compute the cross-transitivity from recurrence networks to identify the dominant direction of the coupling between the heat-release-rate ($q^{\prime }_{\mathbb {X}}$) and pressure ($p^{\prime }_{\mathbb {X}}$) fluctuations in each individual oscillator, as well as that between the pressure ($p^{\prime }_{\mathbb {X}}$ and $p^{\prime }_{\mathbb {Y}}$) fluctuations in each pair of coupled oscillators. We find that networks of non-identical oscillators exhibit circumferentially biased $p^{\prime }_{\mathbb {X}}$$p^{\prime }_{\mathbb {Y}}$ coupling, leading to mode localization, whereas networks of identical oscillators exhibit globally symmetric $p^{\prime }_{\mathbb {X}}$$p^{\prime }_{\mathbb {Y}}$ coupling. In both types of networks, we find that the $p^{\prime }_{\mathbb {X}}$$q^{\prime }_{\mathbb {X}}$ coupling can be symmetric or asymmetric, but that the asymmetry is always such that $q^{\prime }_{\mathbb {X}}$ exerts a greater influence on $p^{\prime }_{\mathbb {X}}$ than vice versa. Finally, we show through a cluster analysis that the $p^{\prime }_{\mathbb {X}}$$p^{\prime }_{\mathbb {Y}}$ interactions play a more critical role than the $p^{\prime }_{\mathbb {X}}$$q^{\prime }_{\mathbb {X}}$ interactions in defining the collective dynamics of the system. As well as providing new insight into the interplay between the $p^\prime_{\mathbb{X}}\text{--}p^\prime_{\mathbb{Y}}$ and $p^\prime_{\mathbb{X}}\text{--}q^\prime_{\mathbb{X}}$ coupling, this study shows that even a small network of four ring-coupled thermoacoustic oscillators can exhibit a wide variety of collective dynamics. In particular, we present the first evidence of chimera states in a minimal network of coupled thermoacoustic oscillators, paving the way for the application of oscillation quenching strategies based on chimera control.

Funder

Research Grants Council, University Grants Committee

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference149 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3