On subsonic boundary-layer receptivity to acoustic waves over an aircraft wing coated by a thin liquid film

Author:

Khoshsepehr F.ORCID,Ruban A.I.ORCID

Abstract

This work is concerned with the laminar–turbulent transition in the boundary layer on an aircraft wing covered by a water film. We consider the initial stage of the transition process known as the receptivity of the boundary layer, namely, we study the generation of the interfacial instability waves by the unsteady free-stream acoustic noise interacting with a small roughness on the wing surface. For effective receptivity, the ‘forcing’ should obey the so-called ‘double-resonance’ principle. According to this principle, both the frequency and the wavenumber of the external perturbations should be in tune with the natural instability modes of the flow. Correspondingly, we choose the frequency of the acoustic wave to coincide with that of the interfacial instability wave. However, this makes the wavelength of the acoustic wave significantly larger than wavelength of the instability wave. Thus, the second resonance condition is not satisfied, which means that the acoustic wave alone cannot produce the instability waves in the boundary layer. Instead, the Stokes layer is created in the boundary layer just above the liquid film. As far as the film is concerned, it also experiences wave-like motion caused by the varying shear stress on the interface. The generation of the interfacial instability waves takes place when the Stokes layer encounters a wall roughness that is short enough for an appropriate scale conversion to take place. To describe the flow in the vicinity of the roughness, a suitably modified triple-deck theory is used.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference30 articles.

1. On Tollmien–Schlichting wave generation by sound;Ruban;Fluid Dyn.,1984

2. Self-induced separation;Stewartson;Proc. R. Soc. Lond. A,1969

3. Theory of laminar boundary layer separation in supersonic flow;Neiland;Fluid Dyn.,1969

4. Nonlinear stability of boundary layers for disturbances of various sizes;Smith;Proc. R. Soc. Lond. A,1979

5. Stability of air flow past thin liquid films on airfoils

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3