Drag-related wave–current interaction inside a dense submerged aquatic canopy

Author:

Tan WeikaiORCID,Yuan JingORCID

Abstract

The seabed in coastal regions is often covered by a dense submerged canopy formed by benthic organisms. The in-canopy flow is of great interest to coastal researchers. In this study, a semi-analytical model is proposed for the in-canopy current profile under the influence of coexisting waves. The current is driven by a mean shear stress at the canopy top and a mean streamwise pressure gradient. Wave–current interaction arises from the mean canopy drag, which is described by the conventional quadratic law. An algebraic eddy viscosity model, which accounts for the turbulence generated by a canopy-scale vortex and stem-scale wake, is proposed. The model is calibrated against unidirectional flume experiments, and is subsequently validated against a wave–current flume experiment. It is found that the mean canopy drag experienced by the current can be significantly amplified by a co-existing wave-driven oscillatory flow. Under the same current driving force, the current in wave–current flow is reduced from that in a pure-current flow. The reduction increases with canopy density and wave strength. For a wave and current at an angle, veering of the current velocity vector is suggested by the model, which makes the mean canopy drag align with the driving force of the current.

Funder

Ministry Of Education of Singapore

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3