Circular hydraulic jumps: where does surface tension matter?

Author:

Duchesne AlexisORCID,Limat Laurent

Abstract

Recently, an unusual scaling law has been observed in circular hydraulic jumps and has been attributed to a supposed missing term in the local energy balance of the flow (Bhagat et al., J. Fluid Mech., vol. 851, 2018, R5). In this paper, we show that – though the experimental observation is valuable and interesting – this interpretation is presumably not the right one. When transposed to the case of an axial sheet formed by two impinging liquid jets, the assumed principle leads in fact to a velocity distribution in contradiction with the present knowledge for this kind of flow. We show here how to correct this approach by maintaining consistency with surface tension thermodynamics: for Savart–Taylor sheets, when adequately corrected, we recover the well-known $1/r$ liquid thickness with a constant and uniform velocity dictated by Bernoulli's principle. In the case of circular hydraulic jumps, we propose here a simple approach based on Watson's description of the flow in the central region (Watson, J. Fluid Mech., vol. 20, 1964, pp. 481–499), combined with appropriate boundary conditions on the circular front formed. Depending on the specific condition, we find in turn the new scaling by Bhagat et al. (2018) and the more conventional scaling law found long ago by Bohr et al. (J. Fluid Mech., vol. 254, 1993, pp. 635–648). We clarify here a few situations in which one should hold rather than the other, hoping to reconcile the observations of Bhagat et al. with the present knowledge of circular hydraulic jump modelling. However, the question of a possible critical Froude number imposed at the jump exit and dictating logarithmic corrections to scaling remains an open and unsolved question.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3