Effect of inclination angle on heat transport properties in two-dimensional Rayleigh–Bénard convection with smooth and rough boundaries

Author:

Chand Krishan,Sharma Mukesh,De Arnab Kr.ORCID

Abstract

Using direct numerical simulations, two-dimensional tilted Rayleigh–Bénard convection (RBC) is studied in both smooth and roughness-facilitated convection cells of double aspect ratio ( $\varGamma =2$ ) for air as a working fluid. We investigate the effect of inclination angle ( $0^{\circ } \leq \phi \leq 90^{\circ }$ ) on heat flux ( $Nu$ ), Reynolds number ( $Re$ ) and flow structures. In a Rayleigh number range $10^{6}\leq Ra\leq 10^{9}$ , we address the $Ra$ dependence of $Nu(\phi )$ trend. In the smooth case, while greater tilt results in highest heat flux below $Ra=10^{8}$ , $Nu$ drops with $\phi$ monotonically above it (RBC transports heat most efficiently), which explains the different $Nu(\phi )$ trend observed in the previous studies due to $Ra$ dependence (Guo et al., J. Fluid Mech., vol. 762, 2015, pp. 273–287; Shishkina & Horn, J. Fluid Mech., vol. 790, 2016, R3; Khalilov et al., Phys. Rev. Fluids, vol. 3, 2018, 043503). For the smooth case, we identify the control parameters ( $\phi =75^{\circ }$ and $Ra=10^{7}$ ) that yield maximum heat flux (an increment of $18\,\%$ with respect to the level case). On the other hand, among the three roughness set-ups used in the present study, the tallest roughness configuration yields the maximum increment in heat flux ( $25\,\%$ ) in vertical convection ( $\phi =90^{\circ }$ ) at $Ra=10^{6}$ . With increase in $Ra$ , $Re$ changes with $\phi$ marginally in the smooth case, whereas it shows notable changes in its roughness counterpart. We find that the weakening of thermal stratification is related directly to the height of roughness peaks. While $Ra$ delays the onset of thermal stratification (in terms of inclination angle) in the smooth case, an increase in roughness height plays the same role in roughness-facilitated convection cells.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3