Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer–Meshkov flows with reshock

Author:

Guo XuORCID,Cong Zhouyang,Si TingORCID,Luo XishengORCID

Abstract

The Richtmyer–Meshkov instability of heavy/light single-mode (SM), trapezoid (TR) and sawtooth (ST) interfaces is studied experimentally by considering the reshock. The TR and ST interfaces can be expanded into Fourier series with a dominant fundamental mode and more high-order modes, recognized as quasi-single-mode ones. In experiments, the distorted interfaces at the time of first reshock arrival develop in the weakly nonlinear stage, ensuring an approximate single-scale function of evolving interface. The results show an evident memory of initial interface shapes: the bubbles and spikes of ST interface after reshock mainly develop in the streamwise direction with sharp heads, while the counterparts of TR interface tend to grow in the spanwise direction. The influences of high-order modes are amplified by the reshock, resulting in significant interface shape dependence of mixing width growths. The amplitude superposition of major odd-order modes promotes the growth rates of mixing widths for the SM and ST cases, different from the TR one. The ST interface has larger mixing width growth rates in comparison with the SM interface, since high-order modes play a great role in promoting the increase of ST amplitudes, while the TR interface has a relatively small one. The linear and nonlinear mixing width growths of SM, TR and ST interfaces before and after reshock are further analysed theoretically, indicating that the fundamental mode still has a predominant influence on the interface evolution after reshock, and the growth behaviours exhibit strong similarities to those for the singly shocked cases.

Funder

Fundamental Research Funds for the Central Universities

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3