Noise reduction mechanisms for insert-type serrations of the NACA-0012 airfoil

Author:

Hu Ya-SenORCID,Wan Zhen-HuaORCID,Ye Chuang-Chao,Sun De-Jun,Lu Xi-YunORCID

Abstract

Trailing-edge serrations inspired by owls are capable of reducing broadband noise. In this study, the wall-resolved large-eddy simulations (LES) are carried out on the flow over NACA-0012 airfoil with additional serrated trailing edges. The computations are conducted with the high-order flux reconstruction method on unstructured meshes. Three kinds of serrations with different lengths are studied and compared with the straight trailing-edge case, and all three types of serration achieved a certain degree of noise reduction. Presently, the medium-length serration achieves the best noise reduction effect. The maximum decrease of overall sound pressure level is approximately 2.4 dB, implying that the length of serration has a substantial impact on the noise reduction effect. The serration has no significant effect on the upstream turbulence statistics, but it changes the flow structure near the serration, such as inducing side vortex pairs attached to the serration edges. Moreover, dynamic mode decomposition shows that the pressure structures vary with the serration length. For the most unstable hydrodynamic wave, the spanwise coherence of the mode structure of pressure in the upstream boundary layer is weakened. In addition, serrations can redistribute the dipole sources on the surfaces of airfoil and serrations. The destructive interference is enhanced to some extent, which is favourable for noise reduction. In contrast with LES simulations, the pure dipole analysis shows that the longest serration case seems to be the best. Furthermore, a recently developed noise theory is used to evaluate the influence of serrations on the flow noise sources qualitatively and quantitatively. It is found that the serrations can mitigate noise source intensity near the serration edges but increase the source intensity in the near wake. The combined effect of serration on the dipole source and flow noise source determines the overall noise reduction effect. To conclude, destructive interference plays a primary role in suppressing noise radiation by serrated trailing edges, and the dual effect of flow noise sources should be considered in future serration designs. As the influence of turbulence structure will make it more difficult to find the optimal serration parameters, the position of high-fidelity simulation will become increasingly important.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3