Interpreted machine learning in fluid dynamics: explaining relaminarisation events in wall-bounded shear flows

Author:

Lellep MartinORCID,Prexl Jonathan,Eckhardt BrunoORCID,Linkmann MoritzORCID

Abstract

Machine Learning (ML) is becoming increasingly popular in fluid dynamics. Powerful ML algorithms such as neural networks or ensemble methods are notoriously difficult to interpret. Here, we introduce the novel Shapley additive explanations (SHAP) algorithm (Lundberg & Lee, Advances in Neural Information Processing Systems, 2017, pp. 4765–4774), a game-theoretic approach that explains the output of a given ML model in the fluid dynamics context. We give a proof of concept concerning SHAP as an explainable artificial intelligence method providing useful and human-interpretable insight for fluid dynamics. To show that the feature importance ranking provided by SHAP can be interpreted physically, we first consider data from an established low-dimensional model based on the self-sustaining process (SSP) in wall-bounded shear flows, where each data feature has a clear physical and dynamical interpretation in terms of known representative features of the near-wall dynamics, i.e. streamwise vortices, streaks and linear streak instabilities. SHAP determines consistently that only the laminar profile, the streamwise vortex and a specific streak instability play a major role in the prediction. We demonstrate that the method can be applied to larger fluid dynamics datasets by a SHAP evaluation on plane Couette flow in a minimal flow unit focussing on the relevance of streaks and their instabilities for the prediction of relaminarisation events. Here, we find that the prediction is based on proxies for streak modulations corresponding to linear streak instabilities within the SSP. That is, the SHAP analysis suggests that the break-up of the self-sustaining cycle is connected with a suppression of streak instabilities.

Funder

Deutsche Forschungsgemeinschaft

Studienstiftung des Deutschen Volkes

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference76 articles.

1. A family of embedded Runge-Kutta formulae

2. Shrikumar, A. , Greenside, P. & Kundaje, A. 2017 Learning important features through propagating activation differences. In Proceedings of the 34th International Conference on Machine Learning ICML (ed. P. Doina & T. Yee Whye), vol. 70. pp. 3145–3153. PMLR.

3. Machine-aided turbulence theory

4. Gibson, J.F. 2014 Channelflow: a spectral Navier–Stokes simulator in C++. Tech. Rep. U. New Hampshire.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3