Electro-fluid-mechanics of the heart

Author:

Verzicco R.ORCID

Abstract

This article presents an overview of the dynamics of the human heart and the main goal is the discussion of its fluid mechanic features. We will see, however, that the flow in the heart can not be fully described without considering its electrophysiology and elastomechanics as well as the interaction with the systemic and pulmonary circulations with which it is strongly connected. Biologically, the human heart is similar to that of all warm-blooded mammals and it satisfies the same allometric laws. Since the Paleolithic Age, however, humans have improved their living conditions, have modified the environment to satisfy their needs and, more recently, have developed advanced medical knowledge which has allowed triple the number of heartbeats with respect to other mammals. In the last century, effective diagnostic tools, reliable surgical procedures and prosthetic devices have been developed and refined leading to substantial progress in cardiology and heart surgery with routine clinical practice which nowadays cures many disorders, once lethal. Pulse duplicators have been built to reproduce the pulsatile flow and ‘blood analogues’, have been realized. Heart phantoms, can attain deformations similar to the real heart although the active contraction and the tissue anisotropy still can not be replicated. Numerical models have also become a viable alternative for cardiovascular research: they do not suffer from limitations of material properties and device technologies, thus making possible the realization of truly digital twins. Unfortunately, a high-fidelity model for the whole heart consists of a system of coupled, nonlinear partial differential equations with a number of degrees of freedom of the order of a billion and computational costs become the bottleneck. An additional challenge comes from the inherent human variability and the uncertainty of the heart parameters whose statistical assessment requires a campaign of simulations rather than a single deterministic calculation; reduced and surrogate models can be employed to alleviate the huge computational burden and all possibilities are currently being pursued. In the era of big data and artificial intelligence, cardiovascular research is also advancing by exploiting the latest technologies: equation-based augmented reality, virtual surgery and computational prediction of disease progression are just a few examples among many that will become standard practice in the forthcoming years.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3