Modelling silo clogging with non-local granular rheology

Author:

Dunatunga SachithORCID,Kamrin KenORCID

Abstract

Granular flow in a silo demonstrates multiple non-local rheological phenomena due to the finite size of grains. We solve the non-local granular fluidity continuum model in quasi-two-dimensional silo geometries and evaluate its ability to predict these non-local effects, including flow spreading and, importantly, clogging (arrest) when the opening is small enough. The model is augmented to include a free-separation criterion and is implemented numerically with an extension of the trans-phase granular flow solver described in Dunatunga & Kamrin (J. Fluid Mech., vol. 779, 2015, pp. 483–513), to produce full-field solutions. The implementation is validated against analytical results of the model in the inclined chute geometry, such as the solution for the critical thickness for flow arrest, and the velocity profile as a function of layer height. We then implement the model in the silo geometry and vary the apparent grain size. The model predicts a clogging criterion when the opening competes with the scale of the mean grain size, which agrees with previous experimental studies. For larger openings, the flow within the silo obtains a diffusive characteristic whose spread depends on the model's non-local amplitude and the mean grain size. The numerical tests are controlled for grid effects and a comparison study of coarse vs refined numerical simulations shows agreement in the pressure field, the shape of the arch in a clogged silo configuration and the velocity field in a flowing configuration.

Funder

Army Research Office

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference65 articles.

1. Caveats on the implementation of the generalized material point method;Buzzi;Comput. Model. Engng Sci.,2008

2. Effect of particle surface friction on nonlocal constitutive behavior of flowing granular media

3. Jenike, A.W. 1964 Storage and flow of solids. Bulletin No. 123, Utah State University.

4. Interplay between hysteresis and nonlocality during onset and arrest of flow in granular materials

5. The flow of granular solids through orifices

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3