Lattice Boltzmann modelling of isothermal two-component evaporation in porous media

Author:

Fei LinlinORCID,Qin FeifeiORCID,Zhao Jianlin,Derome Dominique,Carmeliet Jan

Abstract

A mesoscopic lattice Boltzmann model is implemented for modelling isothermal two-component evaporation in porous media. The model is based on the pseudopotential multiphase model with two components to mimic the phase-change component (e.g. water and its vapour) and the non-condensible component (e.g. dry air), and the cascaded collision operator is used to enhance the numerical performance. The model is first analysed based on Chapman–Enskog expansion and then validated by the theoretical solution of an isothermal diffusive evaporation problem. We then discuss in detail the implementation of wettability based on a geometric function scheme and further validate the model with microfluidic evaporation experiments. We apply the method to simulate the convective evaporation of a dual-porosity medium and investigate the effects of inflow vapour concentration ( ${Y_{vapour,in}}$ ) and contact angle ( $\theta$ ) on the evaporation. Simulation results reproduce the typical transition from the constant evaporation regime (CRP) at large liquid saturation (S) to the receding front period (RFP) at small S, with an intermediate falling rate period in between. The dependence of the average evaporation rates on ${Y_{vapour,in}}$ and $\theta$ during CRP and RFP is investigated. A universal scaling formulation for the evaporation rate during CRP is found with respect to the concentration-related mass transfer number $B_Y$ , contact angle $\theta$ and inflow Reynolds number Re, i.e. $E{R_{CRP}} = {k_3}\ln \left ( {1 + {B_Y}} \right ) {\cdot } \left [ {\ln \left ( {1 + {Re}} \right ) + {k_2}} \right ]\left [ {\cos (\theta ) + {k_1}} \right ]$ , where ${k_1}$ , ${k_2}$ and ${k_3}$ are fitting parameters.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3