A driving mechanism of near-wall turbulence subject to adverse pressure gradient in a plane Couette flow

Author:

Jiao YuxinORCID,Chernyshenko Sergei I.ORCID,Hwang YongyunORCID

Abstract

The effect of adverse pressure gradient (APG) on near-wall turbulence is studied, with a particular attention to the turbulence production mechanism. A plane turbulent Couette flow is considered for several values of constant APG in the lower wall region. A direct numerical simulation (DNS) in a large computational domain shows that turbulence near the lower wall continues to exist even at sufficiently large APGs. On increasing the APG, the cross-streamwise turbulence intensities increase, and the near-wall streaks gradually disappear. A linear analysis using the optimal transient growth indicates that the APG inhibits the generation of near-wall streaks due to the significant reduction of the mean shear in the region near the lower wall. The turbulent fluctuation dynamics beyond the linear regime is studied with a DNS in a minimal flow unit. The near-wall self-sustaining process involving streaks is significantly weakened or destroyed as APG increases, while the turbulent fluctuations become more isotropic and localised. Using a conditional averaging analysis, a new mechanism of near-wall turbulence production under strong APG is uncovered. This mechanism is initiated by the wall-normal nonlinear transport of an outer wall-normal velocity fluctuation to the near-wall region. The transported wall-normal velocity fluctuation is subsequently amplified via the Orr mechanism, resulting in the non-zero turbulence production involving spatially localised vortical structures. This mechanism is also confirmed by DNS of the flow in a large computational domain, where strong correlation between the wall-normal nonlinear transport and turbulence production is observed.

Funder

Leverhulme Trust

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3