Buoyancy segregation suppresses viscous fingering in horizontal displacements in a porous layer

Author:

Hinton Edward M.ORCID,Jyoti Apoorv

Abstract

We consider the axisymmetric displacement of an ambient fluid by a second input fluid of lower density and lower viscosity in a horizontal porous layer. If the two fluids have been segregated vertically by buoyancy, then the flow becomes self-similar with the input fluid preferentially flowing near the upper boundary. We show that this axisymmetric self-similar flow is stable to angular-dependent perturbations for any viscosity ratio. The Saffman–Taylor instability is suppressed due to the buoyancy segregation of the fluids. The radial extent of the segregated flow is inversely proportional to the viscosity ratio. This horizontal extension of the intrusion eliminates the discontinuity in the pressure gradient between the fluids associated with the viscosity contrast. Hence at late times, viscous fingering is shut down even for arbitrarily small density differences. The stability is confirmed through numerical integration of a coupled problem for the interface shape and the pressure gradient, and through complementary asymptotic analysis, which predicts the decay rate for each mode. The results are extended to anisotropic and vertically heterogeneous layers. The interface may have relatively steep shock-like regions, but the flow is always stable when the fluids have been segregated by buoyancy, as in a uniform layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3