Numerical simulation of turbulent, plane parallel Couette–Poiseuille flow

Author:

Cheng W.ORCID,Pullin D.I.,Samtaney R.ORCID,Luo X.ORCID

Abstract

We present numerical simulation and mean-flow modelling of statistically stationary plane Couette–Poiseuille flow in a parameter space $(Re,\theta )$ with $Re=\sqrt {Re_c^2+Re_M^2}$ and $\theta =\arctan (Re_M/Re_c)$ , where $Re_c,Re_M$ are independent Reynolds numbers based on the plate speed $U_c$ and the volume flow rate per unit span, respectively. The database comprises direct numerical simulations (DNS) at $Re=4000,6000$ , wall-resolved large-eddy simulations at $Re = 10\,000, 20\,000$ , and some wall-modelled large-eddy simulations (WMLES) up to $Re=10^{10}$ . Attention is focused on the transition (from Couette-type to Poiseuille-type flow), defined as where the mean skin-friction Reynolds number on the bottom wall $Re_{\tau,b}$ changes sign at $\theta =\theta _c(Re)$ . The mean flow in the $(Re,\theta )$ plane is modelled with combinations of patched classical log-wake profiles. Several model versions with different structures are constructed in both the Couette-type and Poiseuille-type flow regions. Model calculations of $Re_{\tau,b}(Re,\theta )$ , $Re_{\tau,t}(Re,\theta )$ (the skin-friction Reynolds number on the top wall) and $\theta _c$ show general agreement with both DNS and large-eddy simulations. Both model and simulation indicate that, as $\theta$ is increased at fixed $Re$ , $Re_{\tau,t}$ passes through a peak at approximately $\theta = 45^{\circ }$ , while $Re_{\tau,b}$ increases monotonically. Near the bottom wall, the flow laminarizes as $\theta$ passes through $\theta _c$ and then re-transitions to turbulence. As $Re$ increases, $\theta _c$ increases monotonically. The transition from Couette-type to Poiseuille-type flow is accompanied by the rapid attenuation of streamwise rolls observed in pure Couette flow. A subclass of flows with $Re_{\tau,b}=0$ is investigated. Combined WMLES with modelling for these flows enables exploration of the $Re\to \infty$ limit, giving $\theta _c \to 45^\circ$ as $Re\to \infty$ .

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3