Rayleigh–Bénard instability in nanofluids: effect of gravity settling

Author:

Chang Min-HsingORCID,Ruo An-ChengORCID

Abstract

Understanding the mechanism of thermal instability in nanofluids is of fundamental importance to explore the reasons behind the enhancement of heat transfer efficiency. Since Buongiorno (ASME J. Heat Transfer, vol. 128, 2006, pp. 240–250) proposed his theoretical model of nanofluids, most studies focusing on the thermal instability analysis exclusively considered Brownian motion and thermophoresis as the main diffusion mechanisms of nanoparticles. All the analyses concluded that a nanofluid layer is much more unstable than its pure counterpart as it is heated from below. However, a recent experimental observation on Rayleigh–Bénard convection appears to contradict the theoretical prediction, implying that some mechanisms neglected in the previous model may have a significant impact on the onset of thermal convection. In the present study, we revise the convective transport model of nanofluids proposed by Buongiorno and find that the gravitational settling of nanoparticles is a crucial factor influencing the thermal instability behaviour of nanofluids. By performing a linear stability analysis based on the novel model, the effect of gravity settling exhibits a stabilizing mechanism to resist the destabilizing effect of thermophoresis. Furthermore, the onset of instability can be delayed once the nanoparticle diameter exceeds a certain threshold, which explains the phenomenon observed in experiments. Particularly, the oscillatory mode is found to emerge and dominate the flow instability when the gravity settling effect is competitive with the effect of thermophoresis.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3