From breakup to coiling and buckling regimes in buoyant viscoplastic injections

Author:

Akbari S.,Taghavi S.M.ORCID

Abstract

We study the injection flow of a heavy viscoplastic fluid into a light Newtonian fluid, via modelling and experiments. The injection is carried out downward, via an eccentric inner pipe inside a vertical closed-end outer pipe. This configuration results in a core viscoplastic fluid surrounded by an annular Newtonian fluid. The flow is structured and mixing is negligible. As the injection rate increases in a typical experiment, we observe three distinct flow regimes, associated with the core fluid behaviour, namely the breakup, coiling and buckling (bulging) regimes. In the breakup regime, the core fluid is yielded due to the extension caused by buoyancy, while in the buckling regime the yielding occurs due to the compression promoted by the pressure and the interfacial shear stress applied by the upward flow of the annular fluid. For the coiling regime, the core fluid remains largely unyielded until it exhibits a coiling behaviour. We develop a lubrication approximation model, using the Herschel–Bulkley constitutive equation, with dimensionless flow parameters including the Bingham number, the power-law index, the buoyancy number, the viscosity ratio, the diameter ratio, the eccentricity and the aspect ratio. Based on a reasonable prediction to the yielding onset, the model allows us to classify the flow regimes versus an elegant combination of the dimensionless numbers.

Funder

Canada Foundation for Innovation

Petroleum Technology Alliance Canada

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3