Effects of rotor–rotor interaction on the wake characteristics of twin rotors in axial descent

Author:

Chae SeokbongORCID,Lee SeungcheolORCID,Kim JoohaORCID

Abstract

In this study, the effects of rotor–rotor interaction on wake characteristics were investigated experimentally for a twin-rotor configuration in axial descent. The wake velocities were measured at descent rates (descent speed/induced velocity at the rotor disk during hover) from 0.87 to 1.52, and the rotor–rotor interaction strength was controlled by adjusting the distance between the rotor tips. As the descent rate increased, the wake of the isolated rotor gradually entered the vortex ring state (VRS), where the flow established an extensive recirculation zone. Correlation analysis was performed to distinguish the rotor wake between tubular and VRS topologies. The flow states for the isolated rotor were classified into pre-VRS, incipient VRS, and fully developed VRS, depending on the probability of vortex ring formation. The results reveal that the effects of rotor–rotor interaction on the wake characteristics of twin rotors differ depending on the descent rate, distance between rotor tips, and wake region. In the outer region, the flow state of the rotor wake remains consistent with that of the isolated rotor, irrespective of the distance between rotor tips. Conversely, the strong rotor–rotor interaction changes the flow state in the inner region by disrupting the vortex ring structure, intensifying the wake asymmetry about the rotational axis. The thrust measurements show that under the VRS, as the two rotors get closer, the thrust coefficient increases until vortex ring disruption occurs, and then decreases after the vortex ring is disrupted.

Funder

National Research Foundation of Korea

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3