Effect of waveform on turbulence transition in pulsatile pipe flow

Author:

Morón DanielORCID,Feldmann DanielORCID,Avila MarcORCID

Abstract

Pulsatile flow in a straight pipe is a model system for unsteady internal flows in industrial engineering and physiology. In some parameter regimes, the laminar flow is susceptible to helical perturbations, whose transient energy growth scales exponentially with the Reynolds number (Re). In this paper, we link the transient growth of these perturbations to the instantaneous linear instability of the laminar flow. We exploit this link to study the effect of the waveform on turbulence transition by performing linear stability and transient growth analyses of flows driven with different waveforms. We find a higher-energy growth in flows driven with longer low-velocity phases as well as with steeper deceleration and acceleration phases. Finally, we perform direct numerical simulations and show that cases with larger transient growth transition faster to turbulence and exhibit larger turbulence intensities. However, these same cases are also more prone to relaminarisation once turbulence has been established. This highlights that, in pulsatile flows, the linear mechanisms responsible for turbulence transition are distinctly different from the nonlinear mechanisms sustaining turbulence.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3