On simple models for gravity currents from moving sources

Author:

Ungarish M.ORCID

Abstract

The propagation of the gravity current generated from a moving source of buoyancy is of interest in deep-sea mining and related technologies. The study by Ouillon et al. (J. Fluid Mech., vol. 924, 2021, A43) elucidated some salient patterns of the flow concerning a source close to the bottom on the basis of direct numerical simulation on a supercomputer. Here, we present a simple box model that provides further insights and useful analytical approximations for this gravity-current flow system. We show that this flow is very different from that produced by a moving source at the top, studied by Hogg et al. (J. Fluid Mech., vol. 539, 2005, pp. 349–385). The model confirms that the main governing parameter is the ratio $a$ of speed of source to that of buoyancy propagation. The model points out dependency also on the front-jump Froude number (which implies dependency on the height of the ambient fluid). For a sufficiently large $a >a_{crit}$ , a supercritical regime appears in which the gravity current forms a wedge behind the moving source; in the subcritical regime, the upstream propagation attains a maximum $x_m$ at time $t_m$ . The model predicts the value $a_{crit}$ , the distance and time $x_m$ and $t_m$ in the subcritical case, and the shape of the wedge in the supercritical case, without any adjustable constant. Comparisons with the numerical data show fair agreement.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3