Unstable turbulent channel flow response to spanwise-heterogeneous heat fluxes: Prandtl's secondary flow of the third kind

Author:

Salesky Scott T.ORCID,Calaf M.,Anderson W.ORCID

Abstract

Turbulent secondary flows are defined as Prandtl's secondary flow of the first or second kind, the former produced by stretching and/or tilting of vorticity, the latter produced via spatial heterogeneity of Reynolds stresses. Both mechanisms are instantaneously active within inertia-dominated wall turbulence; Reynolds stress spatial heterogeneity is required for Reynolds-averaged secondary flows. Spanwise-variable surface roughness can induce turbulent stress spatial heterogeneity in the spanwise–wall-normal plane and provide sustenance for streamwise-aligned mean secondary flows. Herein, we demonstrate that turbulent secondary flows can also be sustained by spanwise variability in the surface heat flux in unstably stratified turbulent channels, defined hereafter as Prandtl's secondary flow of the third kind. Support for this mechanism is established with scaling arguments, while large-eddy simulation is used to model inertia-dominated channel turbulence responding to a lower boundary with uniform aerodynamic/hydrodynamic roughness but spanwise-variable surface heat flux. Transport equations for streamwise vorticity and turbulent kinetic energy, $k$ , outline the conditions needed for third-kind production: shear and buoyancy production over the elevated heat flux regions necessitates lateral entrainment of low- $k$ fluid, inducing mean counter-rotating secondary cells aligned such that upwelling and downwelling occur over the high and low heat flux regions, respectively. Buoyancy-driven production of $k$ alters aggregate flow response and thus is a distinctly different mechanism responsible for sustenance of secondary flows.

Funder

Biological and Environmental Research

Division of Atmospheric and Geospace Sciences

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3