Unsteady motions in the turbulent separation bubble of a two-dimensional wing

Author:

Wang Sen,Ghaemi SinaORCID

Abstract

The unsteadiness of a turbulent separation bubble (TSB) formed close to the trailing edge of a two-dimensional wing was investigated using time-resolved particle image velocimetry. The angle of attack was set to 9.7° and the chord-based Reynolds number was 720 000. The TSB consisted of two shear layers and formed a triangular shape in the streamwise–wall-normal plane. The vertices of this triangle consisted of an intermittent detachment point, a fixed corner close to the airfoil trailing edge and an intermittent endpoint in the wake region. The velocity field had three energetic regions each with different Strouhal numbers (Stl): (a) an upstream turbulent boundary layer (TBL) with Stl = 0.1 to 4, (b) a TSB with Stl = 0.03 to 0.08 and (c) two shear layers with Stl = 0.4 to 0.8. The low-frequency motions in the TSB consisted of large zones of positive and negative streamwise velocity fluctuation that were several times wider than the large-scale structures of the upstream TBL. These zones forced an undulation of the separation line and were attributed to Görtler structures. They were also correlated with the velocity fluctuations between the two shear layers. The breathing motion of the TSB occurred at Stl = 0.05. This breathing correlated with the location of the TSB endpoint and the flapping of the upper shear layer. The detachment point of the TSB featured broad fluctuations and did not demonstrate a strong correlation with the breathing motion.

Funder

Future Energy Systems at the University of Alberta

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3