A KNOWLEDGE-BASED IDEATION APPROACH FOR BIO-INSPIRED DESIGN

Author:

Chen Liuqing,Cai Zebin,Jiang Zhaojun,Long Qi,Sun Lingyun,Childs Peter,Zuo Haoyu

Abstract

AbstractBio-inspired design (BID) involves generating innovative ideas for engineering design by drawing inspiration from natural biological phenomena and systems, using a form of design-by-analogy. Despite its many successes, BID approaches encounter research challenges including unstructured data and existing models that hinder comprehension and processing, limited focus on finding biological knowledge compared to defined problems, and insufficient guidance of the ideation process with algorithms. This paper proposes a knowledge-based approach to address the challenges. The approach involves transforming unstructured data into structured knowledge, including information about natural sources, their benefits, and applications. The structured knowledge is then used to construct a semantic network, enabling designers to retrieve information for BID in two ways. Furthermore, a three-step ideation method is developed to encourage divergent thinking and explore additional potential solutions by drawing inspiration and utilizing knowledge. The knowledge-based BID approach is implemented as a tool and design cases are conducted to illustrate the process of applying this tool for BID.

Publisher

Cambridge University Press (CUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3