A METHOD FOR REDUCING FUZZINESS AND ACCELERATING NEW PRODUCT MODELLING IN CAD: THE CASE OF DESIGN FOR MANUFACTURING

Author:

Bluntzer Jean-Bernard,Barret Régis,Ostrosi Egon

Abstract

AbstractImprovements in product development can increase the competitiveness of firms. However, new product development in CAD systems involves difficulties and uncertainties that increase along with the pressure to develop the products. A distinct characteristic of CAD modeling for new product development is its uncertainty. This is because the information is usually approximate and incomplete during CAD modeling. Thus, the main objective of this paper is to propose a robust and flexible CAD approach to reduce uncertainty and accelerate new product modeling in the context of design for manufacturing. This methodology permits the convergence towards different product forms depending on the selected manufacturing process. Application of this approach has shown that when uncertainty is high, approving a complete CAD modeling results in a delay in product development. In contrast, CAD modeling using fuzzy models results in a gain of valuable development time because the model is completed when knowledge about manufacturing technologies, company fit and capabilities, and markets is available.

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3