A generalized skein relation for Khovanov homology and a categorification of the θ-invariant

Author:

Chlouveraki M.,Goundaroulis D.,Kontogeorgis A.,Lambropoulou S.

Abstract

The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology in order to obtain a categorification of the θ-invariant, which is itself a generalization of the Jones polynomial.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference16 articles.

1. 14. Turner, P. . Five Lectures on Khovanov Homology. arXiv:math/0606464.

2. Markov Trace on the Algebra of Braids and Ties

3. From the Framisation of the Temperley-Lieb algebra to the Jones polynomial: an algebraic approach;Chlouveraki;Knots, Low-Dimens. Topol. Appl., Springer PROMS,2019

4. Framization of the Temperley–Lieb algebra

5. A polynomial invariant of oriented links

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3