Ultraviolet germicidal irradiation of melted snow and ice samples: inactivation of microorganisms and effects on insoluble microparticles

Author:

Nakazawa Fumio,Goto-Azuma Kumiko

Abstract

AbstractThe long-term refrigerated storage of melted snow and/or ice samples for analyses of insoluble microparticles (hereafter, microparticles) may be limited by increases in the biological particle concentration caused by microbial growth after ~1–2 weeks. In this study, we examined an ultraviolet (UV) disinfection method for the storage of melted snow and/or ice samples and determined the effects of this method on microparticles. Surface snow obtained from Glacier No. 31 in the Suntar-Khayata Range, eastern Siberia, Russia was divided into two portions for UV treatment and untreated controls. Microparticle concentrations and size distributions (in the range of 0.52–12.0 μm) in the samples were measured using a Coulter counter. Whereas the microparticle concentration in untreated samples increased, no obvious increase was observed over 53 d in the samples subjected to UV treatment. Microbial growth was detected in only untreated samples using a viable particle counter. In addition, the original microparticle concentrations and size distributions were unaffected by UV treatment. Our results demonstrated that the microparticle size distribution in untreated melted water samples reflects the growth, decomposition and succession of microorganisms over time and further indicate that UV irradiation is effective for long-term storage for microparticle analysis.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3