Modeling the impacts of climate change on mass balance and discharge of Eklutna Glacier, Alaska, 1985–2019

Author:

Geck JasonORCID,Hock RegineORCID,Loso Michael G.ORCID,Ostman JohnseORCID,Dial RomanORCID

Abstract

AbstractAlaska's largest city, Anchorage, depends on Eklutna Glacier meltwater for drinking water and hydropower generation; however, the 29 km2 glacier is rapidly retreating. We used a temperature-index model forced with local weather station data to reconstruct the glacier's mass balance for the period 1985–2019 and quantify the impacts of glacier change on discharge. Model calibration involved a novel combination of in situ, geodetic mass-balance measurements and observed snowlines from satellite imagery. A resulting ensemble of 250 best-fitting model parameters was used to model mass balance and discharge. Eklutna Glacier experienced a significant negative trend (−0.31 m w.e. decade−1) in annual mean surface mass balance (mean: −0.62 ± 0.06 m w.e.). The day of the year when 95% of annual melt occurs was five days later in 2011–19 than in 1985–93, demonstrating a prolongation of melt season (May–September). Modeled mean specific discharge increased at 0.14 m decade−1, indicating peak water, the year when annual discharge reaches a maximum due to glacier retreat, has not been reached. Four of the five highest discharge years occurred since 2000. Increases in discharge quantity and melt season length require water resource managers consider future decreased discharge as the glacier continues to shrink.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference37 articles.

1. Measurement and computation of streamflow

2. Rapid thinning of lake-calving Yakutat Glacier and the collapse of the Yakutat Icefield, southeast Alaska, USA

3. Glacier runoff and sediment transport and deposition, Eklutna Lake basin, Alaska

4. Importance and vulnerability of the world’s water towers

5. Larquier, AM (2011) Differing contributions of heavily and moderately glaciated basins to water resources of the Eklutna Basin, Alaska (MSc. thesis) Alaska Pacific University, Anchorage, AK.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3