Genetic diversity in clustered colonies of an Antarctic marine mesopredator: a role for habitat quality?

Author:

Mori EmilianoORCID,Brunetti ClaudiaORCID,Carapelli AntonioORCID,Burrini Lucia,Fattorini NiccolòORCID,Ferretti FrancescoORCID,Olmastroni SilviaORCID

Abstract

AbstractGenetic structure may be highly variable across seabird species, and particularly among those that are distributed over large geographical areas. The Adélie penguin (Pygoscelis adeliae) is a numerically dominant Antarctic seabird that is considered to be a key species in coastal ecosystems. Since the Last Glacial Maximum, penguin colonization of the Antarctic coastline occurred at varying geographical and temporal scales, contributing to an incomplete understanding of how modern colonies relate to each other at local or regional scales. We assessed the population genetic structure of Adélie penguins (n = 86 individuals) from three adjacent colonies along the Victoria Land coast using molecular genetic markers (i.e. seven microsatellite loci isolated through next-generation sequencing). Our results indicate meta-population dynamics and possibly relationships with habitat quality. A generally low genetic diversity (Nei's index: 0.322–0.667) was observed within each colony, in contrast to significant genetic heterogeneity among colonies (pairwise FST = 0.071–0.148), indicating that populations were genetically structured. Accordingly, an assignment test correctly placed individuals within the respective colonies from which they were sampled. The presence of inter-colony genetic differentiation contrasts with previous studies on this species that showed a lack of genetic structure, possibly due to higher juvenile or adult dispersal. Our sampled colonies were not panmictic and suggest a lower migration rate, which may reflect relatively stable environmental conditions in the Ross Sea compared to other regions of Antarctica, where the ocean climate is warming.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3