Abstract
AbstractWe describe the glacial geomorphology and initial geochronology of two ice-free valley systems within the Neptune Range of the Pensacola Mountains, Antarctica. These valleys are characterized by landforms associated with formerly more expanded ice sheet(s) that were at least 200 m thicker than at present. The most conspicuous features are areas of supraglacial debris, discrete debris accumulations separated from modern-day ice and curvilinear ridges and mounds. The landsystem bears similarities to debris-rich cold-based glacial landsystems described elsewhere in Antarctica and the Arctic where buried ice is prevalent. Geochronological data demonstrate multiple phases of ice expansion. The oldest, occurring > 3 Ma, overtopped much of the landscape. Subsequent, less expansive advances into the valleys occurred > 2 Ma and > ~1 Ma. An expansion of some local glaciers occurred < 250 ka. This sequence of glacial stages is similar to that described from the northernmost massif of the Pensacola Mountains (Dufek Massif), suggesting that it represents a regional signal of ice-sheet evolution over the Plio-Pleistocene. The geomorphological record and its evolution over millions of years makes the Neptune Range valleys an area worthy of future research and we highlight potential avenues for this.
Publisher
Cambridge University Press (CUP)
Subject
Geology,Ecology, Evolution, Behavior and Systematics,Oceanography
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cirques in the Transantarctic Mountains reveal controls on glacier formation and landscape evolution;Geomorphology;2024-01
2. Middle Pleistocene glaciations in the Southern Hemisphere;Reference Module in Earth Systems and Environmental Sciences;2024
3. Glacial landforms—Introduction;Reference Module in Earth Systems and Environmental Sciences;2024
4. Glacial landsystems;Reference Module in Earth Systems and Environmental Sciences;2024