One-year records from automatic snow stations in western Dronning Maud Land, Antarctica

Author:

Järvinen Onni,Leppäranta Matti,Vehviläinen Juho

Abstract

AbstractTwo automatic snow stations were deployed for one year (from December 2009–January 2011) in western Dronning Maud Land. The purposes of the experiment were: 1) to build a working snow station to measure the snow surface layer temperature, and 2) to use the data for snow heat and mass balance investigations. The data collection was successful and lasted about 400 days (9 December 2009–21 January 2011). The annual net snow accumulation at snow station 2 (continental ice sheet) was 86 cm (345 mm water equivalent) and at snow station 1 (ice shelf) more than 150 cm. The power spectra revealed daily cycle, synoptic scale variability, and variability in a low-frequency band of 60–120 days at a depth of 54 cm. The snow-air heat flux was estimated from the data, resulting in negative values (from snow to air) during autumn and winter and positive values (from air to snow) in spring and summer. The physical characterization of snow stratigraphy was done during installation and retrieval of the snow stations, including density, hardness (hand test), stratigraphy, and grain size and shape.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference45 articles.

1. A snow sensor experiment in Dronning Maud Land, Antarctica

2. Granberg H.B. Irwin G. 1990. A geographic snow information system for vehicle mobility prediction. In Proceedings of the 10th International Conference of the International Society for Terrain-Vehicle Systems, Kobe, Japan, 20–24 August 1990, Vol. 2. Durham, NC: International Society for Terrain-Vehicle Systems, 95–106.

3. Stable isotope homogenization of polar firn and ice;Johnsen;International Association of Hydrological Sciences Publication,1977

4. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3