Author:
King Charles A.,Oliver Lawrence R.
Abstract
Experiments were conducted to evaluate the influence of temperature and water potential on water uptake, germination, and emergence of large crabgrass in order to predict emergence in the field. Water uptake of seed soaked in polyethylene glycol solutions of 0 to −1400 kPa underwent an initial imbibition phase followed by a lag phase and subsequent increase in water content when radicles emerged from the seed. Maximum germination at 15 C was 12% at 0 kPa and 60% at 25 C at 0 to −200 kPa osmotic potential. In the growth chamber, large crabgrass emergence from soil began 2 to 3 d after planting at 30 or 35 C and within 9 to 10 d at 15 C. Maximum emergence of 77 % occurred at 25 C and at a soil water potential of −30 kPa. Emergence percentage decreased as water potential decreased or as temperature increased or decreased. A logistic equation described emergence of large crabgrass at each combination of temperature and soil water potential at which emergence occurred, and a predictive model was developed and validated by field data. In the field, there was little or no emergence at soil temperatures below 15 C or water potentials below −50 to −60 kPa. The model predicted the time of onset of large crabgrass emergence and the time to reach maximum emergence to within 2 to 4 d of that recorded in field experiments. The model also predicted the correct number of flushes of emergence occurring in the field in three of four experiments.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献