Root/Rhizome Exudation of Nicosulfuron from Treated Johnsongrass (Sorghum halepense) and Possible Implications for Corn (Zea mays)

Author:

Gubbiga Nagabhushana G.,Worsham A. Douglas,Corbin Frederick T.

Abstract

Experiments were conducted to evaluate the occurrence and significance of release of herbicide through subterranean parts of nicosulfuron-treated johnsongrass. In a bioassay, the rooting medium of johnsongrass treated foliarly with 50 or 100 μg nicosulfuron plant−1was inhibitory to the radicle elongation of sorghum and corn indicating the increased toxicity of the rooting medium of nicosulfuron-treated johnsongrass. The study with14C-nicosulfuron indicated a basipetal translocation of foliarly applied nicosulfuron in johnsongrass to its roots/rhizomes and also into the rooting medium. By 30 DAT, around 23% of the14C-label absorbed by johnsongrass was found exuded into the rooting medium. Radiochromatogram scans of thin layer chromatography plates of rooting medium indicated unmetabolized nicosulfuron as the major14C-labeled compound (56%). The study also revealed a subsequent uptake of exuded14C by corn roots sharing the medium. On the whole, the amount of14C-label recovered from untreated corn amounted to 4.3% of the total applied to johnsongrass. In another experiment, the presence of nicosulfuron in the rooting medium was detrimental to corn growth. Reductions in corn growth occurred at concentrations of 10−8M nicosulfuron or greater in the rooting medium. The sensitivity of corn to root uptake was attributed to greater accumulation of nicosulfuron at a faster rate in the growing parts.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3