Light Filtration by Foliar Canopies: Significance for Light-Controlled Weed Seed Germination

Author:

Taylorson R. B.,Borthwick H. A.

Abstract

Light from sunlight, incandescent, and fluorescent sources was filtered through fresh tobacco (Nicotiana tabaccum L.), corn (Zea mays L.), and soybean (Glycine max (L.) Merrill) leaves. The spectral quality of the leaf-filtered light showed that much more of the incident red energy was absorbed than the far-red. The effect of the leaf-filtered light on the phytochrome-controlled germination of six weed species was generally to inhibit germination of seeds given a stimulatory pre-irradiation of red light from a standard source. Germination of seeds with no pre-irradiation was either not promoted or promoted to various degrees. Unfiltered light, at intensities equivalent to those under the leaf filters, caused no comparable effects. These results indicate an effect of altered spectral quality of the leaf-filtered light on the ratio of inactive/active phytochrome (Pr/Pfr) in the underlying seeds. We suggest that such phenomena could influence the germination of weed seeds in the field.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3