Author:
Shea Patrick J.,Weber Jerome B.
Abstract
Adsorption and desorption characteristics of fluridone (1-methyl-3-phenyl-5-[3-txifluoromethyl)phenyl]-4-(1H)-pyridinone} on prepared clays and organic matter were studied in unbuffered and buffered aqueous solutions. In unbuffered aqueous solution the adsorption of fluridone decreased in the order: H-saturated organic matter (H-OM) > Ca-saturated montmorillonite (Ca-mont) > Ca-saturated organic matter (Ca-OM) > kaolinite. Based on the chemistry of fluridone, the nature of the adsorbent, and previously reported studies, the major adsorption mechanisms appear to be pH-dependent adsorption of protonated fluridone and direct protonation of the herbicide at acidic surfaces, supplemented by physical adsorption forces such as van der Waals attractions and charge transfer bonds. The adsorption of fluridone on Norfolk sand (Typic Paleudult; fine-loamy, siliceous, thermic), unmodified (CK), or amended with montmorillonite (HC) or organic matter (HM) at pH 4.0, 5.2, and 7.0 was also studied. Over all adsorption was greatest on HC soil, least on CK soil, and intermediate on the HM soil. In each system adsorption was inversely related to pH. These results were interpreted by comparison with adsorption observed on prepared clay minerals and organic matter.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Reference21 articles.
1. Effect of Acidity on Reactions of Organic Acids and Amines with Montmorillonitic Clay Surfaces
2. Adsorption and Desorption of Diquat, Paraquat, and Prometone by Montmorillonitic and Kaolinitic Clay Minerals
3. Adsorption of buthidazole, VEL 3510, tebuthiuron, and fluridone by organic matter, montmorillonite clay, exchange resins, and a sandy loam soil;Weber;Weed Sci.,1980
4. Mechanisms of adsorption of s-triazines by clay colloids and factors affecting plant availability;Weber;Residue Rev.,1970
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献