Inhibition of δ-Aminolevulinic Acid Synthesis by Glyphosate

Author:

Kitchen Lynn M.,Witt William W.,Rieck Charles E.

Abstract

The effect of glyphosate [N-(phosphonomethyl) glycine] on barley (Hordeum vulgareL.) and corn (Zea maysL.) shoot δ-aminolevulinic acid (ALA) production was examined by monitoring ALA content in the tissue and measuring incorporation of14C precursors into ALA and chlorophylla. Barley shoot ALA content was significantly decreased by 1 mM glyphosate after 9, 11, and 15 h of illumination. ALA production by treated barley shoots was 30 nmoles•g fresh weight-1•h-1at each interval tested, compared with 75 to 120 nmoles•g fresh weight-1•h-1for the control. In corn shoots, ALA content was reduced 32, 45, and 58% by 0.1, 1.0, and 10.0 mM glyphosate, respectively, after 12 h illumination. Incorporation studies with14C-glutamate,14C-α-ketoglutarate, and14C-glycine into ALA showed a 77, 92, and 91% inhibition, respectively, in barley shoots treated with 1 mM glyphosate. Incorporation of14C-ALA into chlorophyllawas not affected by 1 mM glyphosate. Thus, the site of action of glyphosate may involve two enzyme pathways:one controlling the conversion of α-ketoglutarate to ALA, and the other controlling the condensation of glycine with succinyl CoA to form ALA and carbon dioxide. Inhibition of ALA synthesis blocks synthesis of chlorophyll, as well as all other porphyrin ring compounds found in higher plants. Thus, inhibition of ALA synthesis may be an integral component of the herbicidal mode of action of glyphosate.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference28 articles.

1. Controls on Chlorophyll Synthesis in Barley

2. The Biosynthesis of δ-Aminolevulinic Acid in Higher Plants

3. Duke S. O. and Hoagland R. E. 1979. Glyphosate and light effects on the induction of phenylalanine ammonia-lyase activity in cotton and soybean seedlings. Abstr., Weed Sci. Soc. Am. p. 96.

4. Polytron PT-10. Brinkmann Instruments Inc., Cantiague Rd., Westbury, NY 11590.

5. The Site of the Inhibition of the Shikimate Pathway by Glyphosate

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3