Physiological basis for nicosulfuron and primisulfuron selectivity in five plant species

Author:

Carey J. Boyd,Penner Donald,Kells James J.

Abstract

Greenhouse and laboratory studies were conducted to determine the physiological basis for selectivity of nicosulfuron and primisulfuron in 5 plant species. Differential sensitivity of the species was quantified by determining GR50values (herbicide rate required to reduce plant growth 50%) for each species/herbicide combination. GR50data indicated the following levels of sensitivity: corn—tolerant to both herbicides; seedling johnsongrass—sensitive to both herbicides; barnyardgrass—sensitive to nicosulfuron and tolerant to primisulfuron; giant foxtail—sensitive to nicosulfuron and tolerant to primisulfuron; and eastern black nightshade—tolerant to nicosulfuron and sensitive to primisulfuron. Studies using14C-radiolabeled herbicides were conducted to determine whether differential herbicide absorption, translocation, or metabolism contributed to whole plant responses. Nicosulfuron and primisulfuron selectivity in corn, johnsongrass, barnyardgrass, and giant foxtail was primarily due to differential herbicide metabolism rate. Tolerant species metabolized the herbicide more rapidly and extensively than sensitive species. Differential herbicide absorption, translocation, or metabolism did not explain differential sensitivity of eastern black nightshade to the herbicides. Further studies indicated that the tolerance of eastern black nightshade to nicosulfuron and its sensitivity to primisulfuron was directly related to lower sensitivity of the acetolactate synthase (ALS) to nicosulfuron than to primisulfuron. Eastern black nightshade translocated very little (3%) of the nicosulfuron applied. The ALS sensitivity of johnsongrass and eastern black nightshade was similar in the presence of nicosulfuron. A combination of a higher ALS level and less herbicide translocation contributes to tolerance of eastern black nightshade and to sensitivity of johnsongrass to nicosulfuron.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference55 articles.

1. Sensitivity mechanism in an ALS-susceptible corn hybrid;Diehl;Abstr. Weed Sci. Soc. Am.,1993

2. Absorption, translocation, and metabolism of foliar-applied chlorimuron in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds;Wilcut;Weed Sci.,1989

3. Imidazolinones

4. Resistance of Kochia (Kochia scoparia) to Sulfonylurea and Imidazolinone Herbicides

5. Nonionic surfactant, X-77 Valent U.S.A. Corp., 1333 N. California Blvd., P.O. Box 8025, Walnut Creek, CA. 94596-8025.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3