Recovery of Transmembrane Potentials in Plants Resistant to Aryloxyphenoxypropanoate Herbicides: A Phenomenon Awaiting Explanation

Author:

Holtum Joseph A. M.,Häusler Rainer E.,Devine Malcolm D.,Powles Stephen B.

Abstract

Aryloxyphenoxypropanoate (APP) herbicides, such as diclofop, depolarize membranes in parenchyma cells of coleoptiles and root tips, and isolated tonoplast or plasma membrane vesicles from a variety of plant species. Some APP-resistant biotypes of rigid ryegrass and wild oat repolarize membranes after removal of herbicide from a bathing medium. The repolarization ability does not require presence of either APP-insensitive acetyl coenzyme A carboxylase or an increased capacity for herbicide detoxification. The kinetics of depolarization and repolarization depend upon the herbicide, the herbicide concentration, the biotype, and the pH of the bathing solution. For rigid ryegrass, depolarization in the presence of diclofop acid is more rapid than in the presence of diclofop-methyl, and 50% depolarization required about 4 μM diclofop acid. Both the nonherbicidal S(–) and the herbicidal R(+) enantiomers of diclofop acid depolarized membranes in susceptible and resistant ryegrass. Susceptible biotypes regenerated transmembrane potentials following removal of the S(–) but not the R(+) enantiomer, whereas resistant biotypes repolarized following exposure to either enantiomer or a mixture of the two. The herbicide 2,4-D affected, in a complex manner, the ability of both susceptible and resistant ryegrass biotypes to depolarize and repolarize. It is postulated that the intracellular concentration of diclofop acid in susceptible and resistant plants is not the same due to differences in the partitioning of diclofop acid between the extracellular spaces and the cytoplasm. The mechanism producing the postulated difference is unknown, but observations on the proton extrusion capacity of both ryegrass and wild oats, the responses of ryegrass to [K+] and PCMBS, and the single-gene inheritance pattern of resistance in wild oats indicate that changes in the diclofop sensitivity of a plasma membrane protein involved in the generation of proton or ion gradients may be involved.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3