Absorption and translocation of glufosinate on four weed species

Author:

Steckel Gregory J.,Hart Stephen E.,Wax Loyd M.

Abstract

Greenhouse and laboratory experiments were conducted to evaluate foliar absorption, translocation, and efficacy of glufosinate on four weed species. The rate of glufosinate required to reduce shoot dry weight by 50% (GR50) varied between weed species. GR50values for giant foxtail, barnyardgrass, velvetleaf, and common lambsquarters were 69, 186, 199, and 235 g ai ha−1, respectively. Absorption of14C-glufosinate increased with time and reached a plateau 24 hours after treatment (HAT). Absorption of14C-glufosinate was 67, 53, 42, and 16% for giant foxtail, barnyardgrass, velvetleaf, and common lambsquarters, respectively. Translocation of absorbed14C-glufosinate from the treated leaf was greatest for giant foxtail and barnyardgrass (15 and 14% 24 HAT of absorbed14C-glufosinate, respectively). This compared to 5 and < 1% for translocation of absorbed14C-glufosinate from the treated leaves of velvetleaf and common lambsquarters. The majority of14C-glufosinate translocated by giant foxtail and barnyardgrass was found below the treated leaf and in the roots, indicating phloem mobility of the herbicide. Differential absorption and translocation of14C-glufosinate may be contributing factors to the differential sensitivity observed between weed species.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference21 articles.

1. Effects of phosphinothricin on the isoenzymes of glutamine synthetase isolated from plant species which exhibit varying degrees of susceptibility to the herbicide

2. Absorption, Translocation, and Metabolism of AC 252 214 in Soybean (Glycine max), Common Cocklebur (Xanthium strumarium), and Velvetleaf (Abutilon theophrasti)

3. Glufosinate efficacy as influenced by rate, timing, and weed species;Steckel;Weed Sci. Soc. Am. Abstr.,1995

4. X-77 (a mixture of alkylarylpolyoxyethylene glycols, free fatty acids, and isopropanol) marketed by Valent USA Corp., Callfornta Boulevard, Walnut Creek, CA 94S96.

5. Surface factors affecting the wetting of leaves

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3