Quantifying the Inhibitor-Target Site Interactions of Photosystem II Herbicides

Author:

Huppatz John L.

Abstract

A convergence of research effort in a number of scientific disciplines in the early 1980s resulted in a rapid expansion of knowledge of the structure and function of the photosynthetic reaction center in bacteria and higher plants. The structure of the reaction center from photosynthetic bacteria was determined by X-ray analysis. The herbicide binding protein (the D1 protein) was identified by photoaffinity labelling and found to be an integral part of the photosynthetic reaction center complex in higher plants. Studies using herbicide-resistant mutants enabled the location of the herbicide binding niche on D1 to be determined. Quantitative Structure Activity Relationships (QSAR) of families of inhibitors and their effect on photosynthetic electron transport helped elucidate the nature of the interaction between inhibitors and receptor. Binding appeared to be predominantly hydrophobic with hydrogen bonding also having an important role. Studies with a series of highly potent inhibitors, the 2-cyanoacrylates, identified certain steric constraints in the interaction of these molecules with the binding site. The activity of these inhibitors was particularly sensitive to minor structural change and they proved to be useful probes of receptor topography. The results of structure-activity studies of the 2-cyanoacrylates combined with a refined knowledge of the three-dimensional structure of the inhibitor binding site has enabled computer-based molecular modelling of interactions of these inhibitors with the receptor. The spatial arrangement of the inhibitor functional groups within the binding domain was shown to be a critical factor in determining binding affinity.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3