Abstract
A convergence of research effort in a number of scientific disciplines in the early 1980s resulted in a rapid expansion of knowledge of the structure and function of the photosynthetic reaction center in bacteria and higher plants. The structure of the reaction center from photosynthetic bacteria was determined by X-ray analysis. The herbicide binding protein (the D1 protein) was identified by photoaffinity labelling and found to be an integral part of the photosynthetic reaction center complex in higher plants. Studies using herbicide-resistant mutants enabled the location of the herbicide binding niche on D1 to be determined. Quantitative Structure Activity Relationships (QSAR) of families of inhibitors and their effect on photosynthetic electron transport helped elucidate the nature of the interaction between inhibitors and receptor. Binding appeared to be predominantly hydrophobic with hydrogen bonding also having an important role. Studies with a series of highly potent inhibitors, the 2-cyanoacrylates, identified certain steric constraints in the interaction of these molecules with the binding site. The activity of these inhibitors was particularly sensitive to minor structural change and they proved to be useful probes of receptor topography. The results of structure-activity studies of the 2-cyanoacrylates combined with a refined knowledge of the three-dimensional structure of the inhibitor binding site has enabled computer-based molecular modelling of interactions of these inhibitors with the receptor. The spatial arrangement of the inhibitor functional groups within the binding domain was shown to be a critical factor in determining binding affinity.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献