Propagation ofEuphorbia esulafor Leafy Spurge Biocontrol Agents

Author:

Lym Rodney G.

Abstract

Efforts to screen and mass-rear insects and diseases for leafy spurge biocontrol agents have been hampered by low success in propagation and slow growth of leafy spurge in the greenhouse. The optimum greenhouse conditions for leafy spurge growth were determined. Leafy spurge was propagated from stem tip cuttings, with the basal end treated with 0.2% NAA, and the plants misted with water for 10 d. Optimum conditions for growth were 27 C air temperature, application of a complete fertilizer at 70 kg ha−1weekly or 135 kg ha−1biweekly 20 d after stem tip propagation, in a peat/perlite/vermiculite growth medium at pH 7 and a 16-h photoperiod. Regrowth from roots of parent plants was improved when cuttings were taken from plants at least 60 d old, and plants grew nearly twice as rapidly when the medium was maintained at 30 C compared to 22 C. Refrigeration of stem tip cuttings or roots before planting did not affect survival or growth vigor. Only gibberellic acid of nine plant growth regulators evaluated increased growth, but plants were etiolated. Biotypes from Nebraska and South Dakota were shorter than five others from the United States or Austria but had similar root and shoot dry weight. The time required to propagate vigorous leafy spurge was reduced to 2 mo compared to 6 mo required prior to the study.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference38 articles.

1. Comparison of soil applied growth regulators on height control of poinsettia;Tjia;Hortscience,1976

2. Economic impact of leafy spurge in North Dakota;Thompson;N.D. Farm Res.,1990

3. Poinsettia stock plant nutrition in relation to production, rooting, and growth of cuttings;Shanks;J. Am. Soc. Hortic. Sci.,1952

4. Cattle Foraging Behavior in Leafy Spurge (Euphorbia esula)-Infested Rangeland

5. Control of leafy spurge by sheep;Helgeson;N.D. Agric. Exp. Stn. Bimonthly Bull.,1942

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3