Author:
Cantwell John R.,Liebl Rex A.,Slife Fred W.
Abstract
The extent of14C-imazaquin and14C-imazethapyr abiotic vs. biotic degradation in soil was investigated. Degradation was measured in an in vitro system which allowed 90% recovery of applied herbicide. Triallate biodegradation is well documented and therefore used as a standard. Herbicide degradation was compared in two soils, a Cisne silt loam and a Drummer silty clay loam. Herbicide degradation in gamma-irradiated soil was compared to fresh soil. Biomass quantities were measured for the duration of the experiments.14CO2evolution, extractable parent, metabolites, and unextractable residue were measured. After 12 weeks of incubation, 95% of the radioactivity could be extracted as parent from sterilized soil. In unsterilized soil, imazaquin and imazethapyr degraded at a similar rate which was dependent upon soil type. All herbicides degraded slower in the Drummer soil and triallate degraded two to three times faster than the imidazolinones in either soil.14C-imazaquin degradation products included14CO2and unextractable residues. The major product from14C-imazethapyr degradation was14CO2. Evolution of14CO2from an imazethapyr-treated Cisne soil, containing a serial dilution of activated charcoal, demonstrated that adsorption of herbicide was negatively correlated with degradation. Therefore imidazolinone microbial degradation is regulated by the amount of herbicide in soil solution as determined by soil characteristics.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献