Soybean (Glycine max) – Velvetleaf (Abutilon theophrasti) Interspecific Competition

Author:

Munger Philip H.,Chandler James M.,Cothren J. Tom,Hons Frank M.

Abstract

In a 2-yr field study conducted on a Weswood silt loam soil (Fluventic Ustochrepts), interspecific competition between soybeans [Glycine max(L.) Merr. ‘Hutton′] and velvetleaf (Abutilon theophrastiMedik. # ABUTH) resulted in greater than 40 and 50% reductions in soybean and velvetleaf seed yield, respectively. Leaf area index, number of mainstem nodes, total number of leaves, and plant dry weight of monocultured and intercropped velvetleaf differed significantly as early as 4 weeks after emergence. Interspecific competition had litttle or no effect on soybean morphology before 8 weeks after emergence. Soil water extraction occurred to 1-m depths in a monoculture of velvetleaf (five plants/m2) in 1984 and 1985. Monocultured soybeans (32.5 plants/m2) extracted water from a 1.5-m or greater depth of the soil profile during the same years. Soil water extraction in the intercropped plots resembled that of the monocultured velvetleaf treatment until soybeans attained R6, when soil water was extracted to a 1.5-m depth. The potential for interspecific competition for water existed early in the season before late-season soybean root development. Relative water content and leaf water potential (Ψw1) did not differ (0.05) between monocultured and intercropped soybeans in 1984 or 1985. In 1985, Ψw1differed between monocultured and intercropped velvetleaf during anthesis. Leaf water potential values in the youngest, fully expanded leaves were approximately 0.3 and 0.4 MPa lower during midmorning and midday hours, respectively, in intercropped and monocultured velvetleaf. Transpiration and stomatal conductance did not differ between monocultured and intercropped soybeans or velvetleaf at any time during 1984. Photosynthetic and transpiration rates, stomatal conductance, and Ψw1were lower in intercropped than in monocultured velvetleaf during anthesis in 1985, suggesting interspecific competition for soil water. Soybean water relations were not affected in either year. The data suggest that soybean yield reductions in soybean-velvetleaf interspecific competition are attributable to resource limitations other than water in south-central Texas.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference24 articles.

1. Biophysical Ecology

2. PMS, Model 600, PMS Instrument Co., Corvallis, OR.

3. Growth and water use by common cocklebur (Xanthium strumarium) and soybeans (Glycine max) under field conditions;Geddes;Weed Sci.,1979

4. Troxler, Model 3226, Troxler Electronic Lab., Inc., Research Triangle Park, NC.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3